Symmetry Methods in Nuclear Physics

1 Mathematical background

- 1. Angular momentum in quantum mechanics
- 2. Elements of the group theory
 - group definition and examples (point symmetry groups, groups of permutations, continuous groups)
 - classes, subgroups, isomorphic groups
 - elements of representation theory
- 3. Group theory in quantum mechanics
 - classification of energy levels and wave functions
 - group invariants and integrals of motion
 - accidental degeneracy (3-dimensional harmonic oscillator, Coulomb problem)
 - symmetry and dynamical symmetry, algebraic approach in physics
- 4. Rotation groups SO(2) and SO(3)
 - rotation operators
 - *D*-functions
 - matrix elements of irreducible operators

2 The nuclear shell model

- 1. One particle problem
 - harmonic oscillator potential
 - Hartree-Fock method
- 2. Two-particle problem
 - two-particle wave function
 - general review on effective interactions
 - calculation of matrix elements of operators
 - configuration mixing
- 3. n-particle wave function (coefficients of fractional parentage)
- 4. Transfer reactions

- 5. Electromagnetic transitions
- 6. Allowed β -decay
- 7. Second quantization
- 8. Modern shell model codes

3 Symmetries in the shell model

- 1. Racah's quasi-spin SU(2) model of pairing
- 2. generalized seniority model
- 3. Wigner's isospin-spin SU(4) symmetry
- 4. Elliott's SU(3) model of rotation
- 5. pseudo-symmetry (pseudo-SU(3), pseudo-SU(4))
- 6. Interacting boson approximation (basic principles)
 - interacting boson model
 - interacting boson-fermion model
 - supersymmetry in nuclei