
Lecture 3. Introduction to Representation Theory of
Finite Groups1

1 Group representations

1.1 Basic de�nitions

Let us put into correspondence to each element G of the group G a square regular matrix

D(G) such that

1. if G1 �G2 = G3 then D(G1) �D(G2) = D(G3)

2. (D(G1) �D(G2)) �D(G3) = D(G1) � (D(G2) �D(G3))

3. D(E) is an identity matrix

4. [D(G)]�1 = D(G�1).

Then the set of the matrices D(G) is called a representation of the group G.

The dimension of the matrices D(G) is called the dimension of the representation.

If the matrices corresponding to the di�erent elements of the group are di�erent then the

group of matrices and the original group are isomorphic and such a representation is called

a faithful (or true) representation.

If each matrix D represents more than one element of the group then the representation

is called unfaithful.

Every group has a trivial one-dimensional identity representation obtained by represent-

ing each element by +1.

Let us consider two di�erent representations of the group G of the same dimension:

D(�)(G) and D(�)(G). If there exists a regular matrix U such that

D(�)(G) = U�1D(�)(G)U (1)

then the representations D(�)(G) and D(�)(G) are equivalent.

The transformation of the type (1) is called a similarity transformation.

1Most of the results given below can be generalized to in�nite discrete or continuous group under certain

conditions [1, 2, 3].

1



1.2 Reducible and irreducible representations

Let us consider two representations D(�)(G) and D(�)(G) of the dimensions l� and l�, re-

spectively. We can construct a larger representation by adding these two:

D(G) = D(�)(G)�D(�)(G) =

 
D(�)(G) 0

0 D(�)(G)

!
(2)

Such a form of the matrix is called a block-diagonal form, and � denotes the direct sum of

the matrices. The dimension of the representation D(G) is l = l� + l�. The representation

D(G) is called a reducible representation because it consists of two smaller representations.

In general, if the representation which is not of a block-diagonal form (2) can be trans-

formed to such a form by a similarity transformation then the representation is called a

reducible representation.

For example, if a representation D(G) can be transformed to a form

D(G) =

0
BBB@
D(1)(G) 0 0 0

0 D(1)(G) 0 0

0 0 D(2)(G) 0

0 0 0 D(3)(G)

1
CCCA (3)

then this representation is reducible and we can write schematically

D(G) = 2D(1)(G)�D(2)(G)�D(3)(G) : (4)

If the representation which is not of the block-diagonal form cannot be transformed to

such a form by any similarity transformation then the representation is called an irreducible

representation.

Remark

Any 1-dimensional representation is an irreducible representation.

1.3 Basis of the representation

Consider l linear independent functions f1(r), f2(r), : : :, fl(r). LetG be a group of symmetry

transformations of the space:

r0 = Gr ;

where G is an element of G. If under these transformations, the functions f1(r), f2(r), : : :,

fl(r) transform as

f 0
i
(r) =

lX
j=1

Dji(G)fj(r) (5)

where Dji(G) are the matrix elements of a representation D(G) of the group G, then it is

said that these functions form a basis of the representation D(G).

If the functions f1(r), f2(r), : : :, fl(r) are orthogonal and normalized then the matrix

elements Dji(G) are given by the integrals

Dji(G) =

Z
f �
j
(r)D(G)fi(r)dr (6)
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We say that the functions f1(r), f2(r), : : :, fl(r) transform according to the representa-

tion D(G) of the group G.

Remark

We can construct a representation in any linear vector space (of su�cient dimension) and

use a basis of this space as a basis of the representation with the appropriate de�nition of

the scalar product. For example, in three dimensions the basis can be three unit vectors ~ex,

~ey and ~ez directed along the axes x, y and z and a scalar product be the usual scalar product

of two vectors.

In quantum mechanics the properties of the system of N particles in a given state are

described by a wave function  (~r1; ~r2; : : : ; ~rN) which is a function of the particle coordinates

~ri. The wave functions satisfy certain boundary conditions determined by the problem. All

these functions form a linear vector space. The scalar product is de�ned as

( 0;  ) =

Z
 0� dV (7)

where integration goes over coordinates of all particles and dV = d~r1d~r2 : : : d~rN . If the

Hamiltonian H is Hermitian, then its eigenfunctions  i satisfying the Schr�odinger equation

H i = Ei i (8)

will be orthogonal

( i;  j) =

Z
 �
i
 jdV = �ij (9)

and therefore they form a basis in the linear space, which can serve as a basis of the repre-

sentation of a symmetry group of the Hamiltonian.

1.4 Construction of group representations

1. Choose a basis of the representation (a set of linear independent vectors)

2. Look how the basis vectors transform under symmetry transformations of the group

3. Write down the matrices of the representation

Example 1

Construct the representation of the group C4 in the basis of three orthogonal unit vectors ~ex,

~ey and ~ez and check if it is a reducible representation or an irreducible one.

Group C4 contains 4 elements: E, C4, C2 and C
3
4 .

Let us choose the symmetry axis C4 perpendicular to the (x; y) plane and coincide with

the vector ~ez. Now consider how the vectors ~ex, ~ey and ~ez transform under operations of the

group C4:
E~ex = ~ex ; E~ey = ~ey ; E~ez = ~ez
C4~ex = ~ey ; C4~ey = �~ex ; C4~ez = ~ez
C2~ex = �~ex ; C2~ey = �~ey ; C2~ez = ~ez
C3
4~ex = �~ey ; C3

4~ey = ~ex ; C3
4~ez = ~ez

(10)
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From (10) we can write down the matrices of these transformations:

D(E) =

0
B@

1 0 0

0 1 0

0 0 1

1
CA ; D(C4) =

0
B@

0 �1 0

1 0 0

0 0 1

1
CA ;

D(C2) =

0
B@
�1 0 0

0 �1 0

0 0 1

1
CA ; D(C3

4) =

0
B@

0 1 0

�1 0 0

0 0 1

1
CA :

(11)

Matrices (11) realize a 3-dimensional representation of the group C4. It is seen from their

explicit form that this representation is reducible. Under transformations of the group C4

the vector ~ez remains unchanged. Thus it forms itself a basis of the identity representation

of this group (let us denote it as D(1)):

D(1)(E) = 1; D(1)(C4) = 1; D(1)(C2) = 1; D(1)(C3
4) = 1 : (12)

The other component of (11) is a 2-dimensional representation of the group C4, which

we denote as D0(G):

D0(E)=

 
1 0

0 1

!
; D0(C4)=

 
0 �1

1 0

!
; D0(C2)=

 
�1 0

0 �1

!
; D0(C3

4 )=

 
0 1

�1 0

!
:

(13)

This representation is also reducible. We can reduce it to two one-dimensional representa-

tions. In order to do this we should �nd a transformation U such that the representation

D00(G) = U�1D0(G)U has a block-diagonal structure for each G. In Section 4 we will learn

a special technique how to do this in a general case. At the moment, we will do it straight-

forwardly by a trial method for C4 group.

Let us choose U as

U =

0
@ 1p

2

1p
2

ip
2

�
ip
2

1
A (14)

The operator U transform the basis vectors ~ex and ~ey to the vectors:

U~ex =
1p
2
(~ex + i~ey) � ~e+1

U~ey =
1p
2
(~ex � i~ey) � ~e�1

(15)

The matrices of the representation D00(G) equivalent to D0(G) look like

D00(E)=

 
1 0

0 1

!
; D00(C4)=

 
�i 0

0 i

!
; D00(C2)=

 
�1 0

0 �1

!
; D00(C3

4)=

 
i 0

0 �i

!
:

(16)

It is seen that the representation D00(G) consists of two 1-dimensional irreducible represen-

tations, which we call D(2) and D(3):

D(2)(E) = 1; D(2)(C4) = �i; D(2)(C2) = �1; D(2)(C3
4) = i

D(3)(E) = 1; D(3)(C4) = i; D(3)(C2) = �1; D(3)(C3
4) = �i

(17)

The vector ~e+1 is the basis vector of the representation D
(2), while the vector ~e�1 is the basis

vector of the representation D(3).
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In summary, in this Example we have constructed a 3-dimensional representation of the

group C4 and decomposed it to three 1-dimensional components (irreducible representa-

tions):

D(G) = D(1)(G)�D(2)(G)�D(3)(G) : (18)

Example 2

Construct the representation of the group C3v in the basis of three orthogonal unit vectors

~ex, ~ey and ~ez and check if it is a reducible representation or an irreducible one.

Group C3v contains 6 elements: E, two rotations C3 and C
2
3 , three re
ections �1, �2, �3.

Let us choose the symmetry axis C3 perpendicular to the (x; y) plane and coincide with

the vector ~ez. Consider how the vectors ~ex, ~ey and ~ez transform under operations of the

group C3v:
E~ex = ~ex; E~ey = ~ey; E~ez = ~ez

C3~ex = �
1
2
~ex +

p
3
2
~ey; C3~ey = �

p
3
2
~ex �

1
2
~ey; C3~ez = ~ez

C2
3~ex = �

1
2
~ex �

p
3
2
~ey; C2

3~ey =
p
3
2
~ex �

1
2
~ey; C2

3~ez = ~ez

�1~ex =
1
2
~ex +

p
3
2
~ey; �1~ey =

p
3
2
~ex �

1
2
~ey; �1~ez = ~ez

�2~ex = �~ex; �2~ey = ~ey; �2~ez = ~ez

�3~ex =
1
2
~ex �

p
3
2
~ey; �3~ey = �

p
3
2
~ex �

1
2
~ey; �3~ez = ~ez

(19)

From (19) we can write down the matrices of these transformations:

D(E) =

0
B@

1 0 0

0 1 0

0 0 1

1
CA ; D(C3) =

0
BB@
�

1
2

�

p
3
2

0
p
3
2

�
1
2

0

0 0 1

1
CCA ; D(C2

3) =

0
BB@

�
1
2

p
3
2

0

�

p
3
2

�
1
2

0

0 0 1

1
CCA ;

D(�1) =

0
BB@

1
2

p
3
2

0
p
3
2

�
1
2

0

0 0 1

1
CCA ; D(�2) =

0
B@ �1 0 0

0 1 0

0 0 1

1
CA ; D(�3) =

0
BB@

1
2

�

p
3
2

0

�

p
3
2

�
1
2

0

0 0 1

1
CCA :

(20)

Matrices (20) form a 3-dimensional representation of the group C3v. This representation is

reducible. We can immediately see that it consists of a 2-dimensional and a 1-dimensional

representations.

The vectors ~ex and ~ey form the basis of the 2-dimensional representation, which we denote

as D(3):

D(3)(E) =

 
1 0

0 1

!
; D(3)(C3) =

 
�

1
2

�

p
3
2p

3
2

�
1
2

!
; D(3)(C2

3) =

 
�

1
2

p
3
2

�

p
3
2

�
1
2

!
;

D(3)(�1) =

 
1
2

p
3
2p

3
2

�
1
2

!
; D(3)(�2) =

 
�1 0

0 1

!
; D(3)(�3) =

 
1
2

�

p
3
2

�

p
3
2

�
1
2

!
:

(21)

The 1-dimensional representation is the identity representation, whose basis is the vector ~ez.

We denote it as D(1):

D(1)(E) = 1; D(1)(C3) = 1; D(1)(C2
3) = 1; D(1)(�1) = 1; D(1)(�2) = 1; D(1)(�3) = 1 : (22)

Thus we have found that

D(G) = D(1)(G)�D(3)(G) : (23)
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Example 3

Construct the representation of the group C3v in a 3-dimensional space of the functions of

the type f(~r) = c1x
2 + c2y

2 + c3xy.

We can choose as a basis three linear independent functions f1 = x2, f2 = y2, f3 = xy

(this is not an orthogonal basis).

Let us see how these basis will change under transformations of the group C3v. For the

identity element it is trivial:

Ef1 = x2 = f1 ; Ef2 = y2 = f2 ; Ef3 = xy = f3 (24)

and the matrix looks like:

D(E) =

0
B@

1 0 0

0 1 0

0 0 1

1
CA (25)

Now, let us consider rotation C3. Under this rotation, the coordinates x and y transform

as
C3x = �

1
2
x+

p
3
2
y

C3y = �

p
3
2
x� 1

2
y

(26)

Inserting these expressions in the functions f1 = x2, f2 = y2, f3 = xy, we get

C3f1 =
1
4
x2 + 3

4
y2 �

p
3
2
xy

C3f2 =
3
4
x2 + 1

4
y2 +

p
3
2
xy

C3f3 =
p
3
4
x2 �

p
3
4
y2 � 1

2
xy

(27)

and we obtain the matrix of the representation for C3

D(C3) =

0
BB@

1
4

3
4

p
3
4

3
4

1
4

�

p
3
4

�

p
3
2

p
3
2

�
1
2

1
CCA (28)

In the same way, we can construct the other four matrices of the representation (see prob-

lems).

2 Some important properties of representations

1. Each representation is equivalent to a unitary representation, i.e. to a representation

in which each group element is represented by a unitary matrix 2 .

2. The number of irreducible representations of a group equals to the number of group

classes.

Example

Six elements of the group C3v can be divided into three classes (see the exact de�nition

of the class in the previous lecture):

2Remember that only �nite groups are considered here
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� E

� C3, C
2
3

� �1, �2, �3

In the group of transformations, the classes unite physically equivalent transformations,

e.g. identity, rotations, re
ections.

Thus the group C3v has three irreducible representations.

3. If l� is the dimension of the irreducible representation D(�)(G) then

X
�

l2
�
= n ; (29)

where n is the number of the group elements and the sum goes over all irreducible

representations of the group.

Example

Let us apply this formula to the group C3v. The group has 6 elements divided into 3

classes and, therefore, it has 3 irreducible representations. From (29) we have:

l21 + l22 + l23 = 6 : (30)

It is easy to check that the only possible solution is l1 = 1, l2 = 1, l3 = 2, i.e. the

group C3v has two 1-dimensional and one 2-dimensional irreducible representations.

4. Orthogonality relation: If D(�)(G) and D(�)(G) are irreducible unitary representations,

then X
G

D
(�)�
ij

(G)D
(�)
km
(G) =

n

l�
����ik�jm (31)

where n is the number of the group elements, l� is the dimension of the representation

D(�)(G) and the sum goes over all elements G of the group G.

3 Characters

3.1 Basic de�nitions

The character �(G) of the element G in the representation D is the trace of the matrix

D(G):

�(G) =
X
i

Dii(G) (32)

In order to apply the group in physics usually it is su�cient to know only the characters

of the irreducible representations of the symmetry group of the Hamiltonian, without the

explicit form of the matrices.

The characters of all irreducible representations of the point symmetry groups are usually

given by tables, of the symmetric group Sn and of the continuous matrix groups are given

by recurrent formulae and can be found in di�erent books, e.g. [1, 2, 3].

Example
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Find the characters of the 3-dimensional representation D(G) of the group C3v given by (20)

and of its components D(1)(G) and D(3)(G) given by (22) and (21), respectively.

From the explicit form of the matrices of the representations D(G), D(1)(G) and D(3)(G)

we can easily calculate the characters, i.e. the traces of these matrices. The results are

summarized in the table below:

E C3 C2
3 �1 �2 �3

�(1) 1 1 1 1 1 1

�(3) 2 �1 �1 0 0 0

� 3 0 0 1 1 1

Remark

It is seen from table that the sum of the characters of the representation D(G) equals to the

sum of the characters of its components. In general, if

D(G) = D(1)(G)�D(2)(G)�D(3)(G)� : : : ; (33)

then

�(G) = �(1)(G) + �(2)(G) + �(3)(G) + : : : : (34)

3.2 Some important properties of group characters

1. Equivalent representations have the same set of characters.

2. In any representation the characters are the same for all elements from a given class

(e.g., see the table of characters for the group C3v above).

3. Since D(E) is just an identity matrix, then the character �(E) is always equal to the

dimension of the representation.

4. If �(�)(G) and �(�)(G) denote the characters of an element G in the irreducible unitary

representations D(�)(G) and D(�)(G), respectively, then

X
G

�(�)�(G)�(�)(G) = n��� (35)

where the sum goes over all group elements G and n is the total number of the group

elements (the order of the group).

Since the elements belonging to one class have the same characters, the formula (35)

can be re-written as X
C

nC�
(�)�(C)�(�)(C) = n��� (36)

where �(�)(C) denotes the character of the elements from the class C, nC is the number

of the elements in a given class C and the sum goes over all classes of the group.

5. If the representation D(�)(G) is irreducible, then from (35) we get

X
G

j�(�)(G)j2 = n ; (37)
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or, using the classes, X
C

nC j�
(�)(C)j2 = n : (38)

These formulae can be used as a check if a representation is irreducible or not.

Example 1

Check if the representation D(3)(G) of the group C3v is irreducible.

From (37) we have:

22 + 12 + 12 + 02 + 02 + 02 = 6 : (39)

Since the group contains exactly 6 elements, then the criterion (37) is satis�ed and the

representation D(3)(G) is irreducible.

Instead of (37), we can use (38) that brings us to the same result:

1 � 22 + 2 � 12 + 3 � 02 = 6 : (40)

Example 2

Find the third irreducible representation of the group C3v.

Below we constructed the table of the characters of two irreducible representations

D(1)(G) and D(3)(G) of the group C3v. From the Example of Section 2 we know that

there exists a third irreducible representation of this group, which we denote as D(2)(G),

and it is 1-dimensional. Thus the character table for all irreducible representations of the

group C3v will look as follows:

E C3, C
2
3 �1, �2, �3

�(1) 1 1 1

�(2) 1 a b

�(3) 2 �1 0

In this table we have already united elements into classes. We need to �nd two unknown

characters, denoted by a and b in this table. To do this, let us use the formula (36):X
C

nC�
(1)(C)�(2)(C) = 0 ;X

C

nC�
(3)(C)�(2)(C) = 0 :

(41)

Inserting the required values from the table above into (41), we get two equations:

1 � 1 � 1 + 2 � 1 � a + 3 � 1 � b = 0 ;

1 � 2 � 1 + 2 � (�1) � a+ 3 � 0 � b = 0 ;
(42)

from which we �nd that a = 1 and b = �1. Thus, we get the �nal table of characters of all

irreducible representations of the group C3v:

E C3, C
2
3 �1, �2, �3

�(1) 1 1 1

�(2) 1 1 �1

�(3) 2 �1 0
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Example 3

Find the characters of all irreducible representations of the symmetric group S3.

Group S3 contains 6 elements:

E =

 
1 2 3

1 2 3

!
; �1 =

 
1 2 3

3 1 2

!
; �2 =

 
1 2 3

2 3 1

!
;

P12 =

 
1 2 3

2 1 3

!
; P23 =

 
1 2 3

1 3 2

!
; P13 =

 
1 2 3

3 2 1

!
:

(43)

These elements can be divided into three classes:

� E

� �1, �2

� P12, P23, P13

Thus the group has three irreducible representations. From (29) we can �nd their dimensions:

l21 + l22 + l23 = 6 ; (44)

and the only possible solution is l1 = 1, l2 = 1, l3 = 2, i.e. the group S3 has two 1-dimensional

and one 2-dimensional irreducible representations. Let us denote them as D(1)(G), D(2)(G)

and D(3)(G). We already know the characters of the element E in this representations (they

equal to the dimensions of the representations). Moreover, it is clear that one of the two

1-dimensional irreducible representations is an identity representation. Let us put all this

information into a character table:

E �1, �2 P12, P23, P13
�(1) 1 1 1

�(2) 1 a b

�(3) 2 c d

In order to �nd four unknown characters, denoted by a, b, c and d, let us use the formulae

(36) and (38): X
C

nC�
(1)(C)�(2)(C) = 0 ;X

C

nC�
(1)(C)�(3)(C) = 0 ;X

C

nC j�
(2)(C)j2 = 6 ;X

C

nC j�
(3)(C)j2 = 6 :

(45)

Inserting the known characters into (46), we get four equations:

1 � 1 � 1 + 2 � 1 � a+ 3 � 1 � b = 0 ;

1 � 2 � 1 + 2 � 1 � c+ 3 � 1 � d = 0 ;

1 � 12 + 2 � a2 + 3 � b2 = 6 ;

1 � 12 + 2 � c2 + 3 � d2 = 6 ;

(46)
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from which we �nd that a = 1, b = �1, c = 2, d = 0. Thus, we get the �nal table of

characters of all irreducible representations of the group S3:

E �1, �2 P12, P23, P13
�(1) 1 1 1

�(2) 1 1 �1

�(3) 2 �1 0

Remarks

1. It is seen that the characters of the irreducible representations of the groups C3v and

S3 coincide. This is a natural result, since these two groups are isomorphic.

2. Usually the representations of the symmetric group Sn are labelled by the so-called

Young tableau. The Young tableau is a scheme consisting of n small boxes (the number

of boxes equals the number of particles). The boxes can be placed in one row, two

rows, and so on. If we have n1 particles in the �rst row, n2 particles in the second row,

: : :, ni particles in the ith row, then the scheme is denoted as [n1; n2; : : : ; ni] where

n1 + n2 + : : :+ ni = n. It is always required that n1 � n2 � : : : � ni.

The same notations can be used to label the basis functions of the representation. The

physical meaning of these schemes is that the particles which are in the same row are

in a totally symmetric state (the sign of the wave function does not change under any

permutation of any number of the particles from the row), while the particles which are

in the same column are in a totally antisymmetric state (the sign of the basis function

changes under permutation of any two particles from the column).

The irreducible representations of S3 obtained in the Example 3, can be labelled by

the following Young tableaux:

D(1)(G) = [3] ;

D(2)(G) = [111] ;

D(3)(G) = [21] :

(47)

It means that the representation [3] is realized on the functions which are symmetric

with respect to interchange of any of three particles, the representation [111] is real-

ized on the functions which are antisymmetric with respect to interchange of any of

three particles, while the representation [21] is realized on the functions which is of

mixed symmetry (symmetric with respect to interchange of some of three particles,

but antisymmetric with respect to interchange of the other particles).

4 Decomposition of representation into irreducible com-

ponents

Suppose that we know all irreducible representations D(1)(G), D(2)(G), : : : of a given group.

Then we can represent any arbitrary reducible representation in a form:

D(G) = m1D
(1)(G)�m2D

(2)(G)� : : : ; (48)
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where m� denote how many times a representation D(�)(G) contains in the representation

D(G).

How to �nd these m�?

From (35) it follows that

m� =
1

n

X
G

�(�) �(G)�(G) ; (49)

where �(�)(G) is the character of the representation D(�)(G) (it is complex conjugate in the

formula (49)) and �(G) is the character of the representation D(G).

Example

Construct the representation of the symmetric group S3 in the basis formed by the vectors

(~e1,~e2,~e3) supposing that each permutation of the group interchanges the vectors having the

corresponding indices. Decompose this representation into irreducible components.

To construct the representation, let us �rst look how the basis transforms under permu-

tations. Since we have three basis vectors, the representation which we want to construct is

3-dimensional. for the identity element we have

D(E) =

0
B@ 1 0 0

0 1 0

0 0 1

1
CA (50)

Now, let us consider P12. Under this permutation, the vectors ~e1 and ~e2 interchange their

places:

D(P12)(~e1; ~e2; ~e3) = (~e2; ~e1; ~e3) (51)

and we get a matrix

D(P12) =

0
B@ 0 1 0

1 0 0

0 0 1

1
CA (52)

In the same way, we can construct the other four matrices of the representation:

D(P23) =

0
B@

1 0 0

0 0 1

0 1 0

1
CA ; D(P13) =

0
B@

0 0 1

0 1 0

1 0 0

1
CA ;

D(�1) =

0
B@ 0 0 1

1 0 0

0 1 0

1
CA ; D(�2) =

0
B@ 0 1 0

0 0 1

1 0 0

1
CA :

(53)

the characters of these representation are given in the table below:

E �1, �2 P12, P23, P13
� 3 0 1

Now, let us decompose this representation into irreducible components. The characters

of all three irreducible representations were found in Example 3 of the section 3.2. Thus we

have:

D(G) = m1D
(1)(G)�m2D

(2)(G)�m3D
(3)(G) : (54)
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In order to �nd how many times each of these representations are contained in D(G) (the

values m�, let us use the formula (35):

m1 =
1

6
(3 � 1 + 1 � 0 + 1 � 0 + 1 � 1 + 1 � 1 + 1 � 1) = 1 ;

m2 =
1

6
(3 � 1 + 1 � 0 + 1 � 0� 1 � 1� 1 � 1� 1 � 1) = 0 ;

m3 =
1

6
(3 � 2� 1 � 0� 1 � 0 + 0 � 1 + 0 � 1 + 0 � 1 = 1) ;

(55)

from where we get the �nal result:

D(G) = D(1)(G)�D(3)(G) : (56)

5 Direct product of representations

Suppose that two sets of the functions f
(�)
1 (r), f

(�)
2 (r), : : :, f

(�)
l�

(r) and f
(�)
1 (r), f

(�)
2 (r), : : :,

f
(�)
l�

(r) form the bases of two representations of the group G: D(�)(G) and D(�)(G) of the

dimensions l� and l�, respectively. Then the l�l� products f
(�)
i

(r)f
(�)
j

(r) form a basis of some

representation of the group G, which we denote as D(���) and whose matrix elements are

D
(���)
ik;jm

(G) = D
(�)
ij
(G)D

(�)
km
(G) (57)

This representation is called a direct product of two representations D(�(G) and D(�)(G) and

its dimension l = l�l�.

If �(�)(G) and �(�)(G) denote the characters of an element G in the irreducible unitary

representations D(�)(G) and D(�)(G), respectively, then

�(���)(G) = �(�)(G)�(�)(G) : (58)
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