
Lecture 4. Application of Group Theory

to Quantum Mechanics. Part I

1 Elements of quantum mechanics

In quantum mechanics the behaviour of a system with n degrees of freedom described

by ~r = f~r1; ~r2; : : : ; ~rn; g is fully determined by its wave function  (~r; t). The quantity

j (~r; t)j2dV is interpreted as a probability that at the time t the coordinates of the system

have the values inside the element of the volume dV near the point ~r. Thus the wave

function should be normalized as Z
j (~r; t)j2dV = 1 ; (1)

when the integral is taken over all coordinates.

The wave functions are solutions of the Schr�odinger equation

Ĥ(~r; t) (~r; t) = i�h
@

@t
 (~r; t) ; (2)

where Ĥ(~r; t) is the Hamiltonian corresponding to the classical Hamilton function H =

T + V , where T is a kinetic energy and V is a potential energy. To get the quantum me-

chanical operator Ĥ(~r; t), we substitute the classical coordinates and conjugate momenta

by operators (e.g., x ! x̂, px ! �i�h @

@x
). The boundary conditions for the equation (2)

guarantee that the wave function  (~r; t) is uniquely determined at any time t.
If the Hamiltonian does not depend on time, then the solutions of the equation (2)

have the form

 E(~r; t) =  E(~r) exp (�iEt=�h) ; (3)

where  E(~r) is a solution of the time-independent secular equation

Ĥ(~r) E(~r) = E E(~r) ; (4)

and E is a corresponding eigenvalue. The set of functions  E(~r) is a complete set, i.e.

any solution of the equation (2) can be expressed as

 (~r; t) =
X
E

aE E(~r) exp (�iEt=�h) ; (5)

where aE are parameters. Solution of the type (3) are called the stationary solutions,

because the probability density j (~r; t)j2dV does not depend on time. The eigenvalues E

are interpreted as the energy of the system.

The set of the continuous functions satisfying the boundary conditions for the equation

(2) form a functional space called a Hilbert space. The scalar product is convenient to

de�ne as

( 0;  ) =
Z
 0� dV (6)

where integration goes over all possible values of the coordinates. If we require that the

energy E be real, then the Hamiltonian should be a Hermitian operator. In this case, the

eigenfunctions  E(~r) are orthogonal (and normalized due to (1)).
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Similarly, we can put into correspondence to any classical variable T a Hermitian

operator T̂ de�ned in a Hilbert space of wave functions. Each such operator has its own

set of eigenvalues and eigenfunctions

T̂ ��(~r) = ���(~r) ; (7)

and the eigenfunctions ��(~r) being the complete orthogonal set of functions. The eigen-

values � can be related to the measurements of the physical observable T . The given value

� will be obtained only if the wave function of the system at this moment of time coincides

with the eigenfunction ��(~r) of the operator T̂ . In general the wave function does not

coincide with one of the eigenfunctions of the operator T̂ , but due to the completeness of

the set of functions ��(~r) we can always write

 (~r; t) =
X
�

c�(t)��(~r) : (8)

The result of the measurement of the observable T in this state is not uniquely determined,

but jc�(t)j
2 is a probability that the observable has a value �. The mean value of the

operator T̂ in a state  (~r; t) is

( ; T̂ ) � h jT̂ j i =
X
�

jc�(t)j
2� : (9)

If the spectrum of the operator � is discrete we have a quantization: the measured

values of the observable T are discrete. If the spectrum of the operator T̂ is continuous

then expression (8) has the form

 (~r; t) =
Z
c(�; t)��(~r)d� : (10)

If we want to study a quantum system experimentally, we can measure its energy and

the mean values of the operators and then compare them with the results calculated using

a model Hamiltonian. Another important measurement is a rate of the transition, or a

probability that the system being in the initial state  i transforms to a �nal state  f .

This probability is given by

Wif � jh ijT̂ j f ij
2; (11)

where T̂ is the operator characterizing a given process.

2 Symmetry of quantum system

2.1 Classi�cation of energy levels

Let us consider a system characterized by a time-independent Hamiltonian Ĥ(~r) with a

wave function  (~r). Any arbitrary transformation of the coordinates (e.g., rotation or

reection),

~r
G
! ~r 0 = G~r ; (12)
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will induce the corresponding transformation in the space of wave functions, which we

denote by the operator D̂(G):

 (~r)
G
!  0(~r) = D̂(G) (~r) =  (G�1~r) : (13)

Let us suppose that T̂ is an operator in the space of functions. Under transformation of

the coordinates G, this operator will also be transformed as

T̂
G
! T̂ 0 = D̂(G)T̂ D̂�1(G) : (14)

Consider the group G of all such the transformations G. According to (14), this group

also determines the transformation of the Hamiltonian of the system:

Ĥ(~r)
G
! Ĥ 0(~r) = D̂(G)Ĥ(~r)D̂�1(G) : (15)

If the Hamiltonian is invariant under these transformations, i.e.

D̂(G)Ĥ(~r)D̂�1(G) = Ĥ(~r) ; (16)

for all elements G, then the group G is a symmetry group of the Hamiltonian.

An equivalent form of the condition (16) is

D̂(G)Ĥ(~r) = Ĥ(~r)D̂(G) ; or [D̂(G); Ĥ(~r)] = 0 (17)

i.e. the Hamiltonian commutes with the induced transformations of the group.

Remark

The kinetic energy operator is invariant under many transformations, such as rotations,

reections and translations, so usually the condition of the invariance of the Hamiltonian

reduces to the condition on the potential energy operator.

What are the consequences of the symmetry?

Suppose that G is a symmetry group of the Hamiltonian of a quantum mechanical

system. Let the operators D̂(G) describe the transformations of the wave functions of

the system and of the operators of physical observables. The symmetry requires that the

Hamiltonian commute with the operators D̂(G), see (17).

Let  (~r) be an eigenfunction of the Hamiltonian Ĥ corresponding to the eigenvalue

E:

Ĥ (~r) = E (~r) : (18)

Let us multiply the equation (18) by the operators D̂(G) from the left:

D̂(G)Ĥ (~r) = ĤD̂(G) (~r) = ED̂(G) (~r) ; (19)

that means that the transformed function D̂(G) (~r) is also the eigenfunction of the Hamil-

tonian Ĥ and corresponds to the same eigenvalue E.
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Suppose now that the eigenvalue E is l-fold degenerate and the corresponding eigen-

functions are  i(~r) (i = 1; : : : ; l). Obviously, each of the transformed functions D̂(G) i(~r)

is also an eigenfunction, belonging to the same eigenvalue E, and it can be nothing else

but the superposition of these functions

D̂(G) i(~r) =
X
j

Dji(G) j(~r) (20)

for any element G of the group G. This means that the operators D̂(G) form a represen-

tation of the group G and the functions  i(~r) is the basis of this representation.

If the Hamiltonian of a system is invariant with respect to a group G then each of its

eigenvalues E can be associated with a certain representation of the group G, while the

corresponding eigenfunctions  i(~r) (i = 1; : : : ; l) form a basis of this representation. The

degeneracy of the level E is equal to the dimension l of this representation.

Normally, if G is a full symmetry group of the Hamiltonian, the representations cor-

responding to its eigenvalues are irreducible representations. This is called a normal

degeneracy of the level.

However, it can happen that for some Hamiltonian parameters two or more irreducible

representations correspond to one energy level. This is called an accidental degeneracy.

For example, sometimes if we put a system in the electric or magnetic �eld and change the

�eld strength the levels normally corresponding to two di�erent irreducible representations

can intersect.

If for a certain Hamiltonian with a symmetry group G such accidental degeneracy

happens systematically, then it can be usually explained by a presence of a larger sym-

metry group G0: G � G0.

Example 1

Let us consider the rotational Hamiltonian of a rigid triaxial rotor:

Ĥrot =
3X

k=1

�h2

2Ik
Ĵ2
k
; (21)

where Ik are the principle moments of inertia and Ĵk are operators of the projections of

the angular momentum on the intrinsic axes (such a form has the most general rotational

Hamiltonian of an even-A nucleus). The Hamiltonian is invariant under rotations around

each of the three principle axes of the rotor through the angle �:

Rk(�) = exp (�i�Ĵk) : (22)

Three elements R1(�), R2(�) and R3(�), together with the identity element E form a

point symmetry group D2 and this is a symmetry group of the Hamiltonian (21). D2 has

four 1-dimensional irreducible representations, therefore the energy levels of the triaxial

rotor will be non-degenerate and of four di�erent types.

Example 2
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Let us consider a system whose Hamiltonian is invariant with respect to the group C3v.

Group C3v has three irreducible representations: two 1-dimensional (A1, A2) and one

2-dimensional (E). This means that the spectrum of eigenvalues of the Hamiltonian con-

sists of the non-degenerate and 2-fold degenerate levels belonging to the representations

A1, A2 or E.

Example 3

If the potential energy of a system is invariant with respect to rotation in a plane

V (~r) � V (r; �; �) = V (r; �) ; (23)

then the symmetry group of the Hamiltonian is the rotational group in 2-dimensions

SO(2).

The group SO(2) is a one-parameter group. The rotation in the plane (x; y) through

an angle a (0 � a < 2� is su�cient)

�
a
! �0 = �+ a (24)

(here � is a polar angle) induces a transformation of any function of � as (see (13))

 (�)
a
!  0(�) =  (�� a) : (25)

If we decompose this into Taylor series, we get

 (�� a) =  (�)� a
@

@�
 (�) +

1

2!
a2

@2

@�2
 (�) + : : : = exp

 
�a

@

@�

!
 (�) : (26)

Thus the rotation operator is

D̂(a) = exp

 
�a

@

@�

!
: (27)

Since �i @
@�

= Ĵz, it can be re-written as

D̂(a) = exp (�iaĴz) : (28)

Any function of the type

 (m)(�) = Am exp (im�) (29)

where m is a number, can serve as a basis of the 1-dimensional irreducible representations

which will be of the form

D(m)(a) = exp (�ima) : (30)

The group SO(2) has an in�nite number of the 1-dimensional irreducible representations

(30). If m is real and integer, then these representations are unitary and continuous for

0 � a < 2�. Thus, the Hamiltonian with SO(2) symmetry has non-degenerate eigenval-

ues which can be labelled by an integer m.
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Example 4

If the potential energy of a system is invariant with respect to rotations in 3-dimensional

space, i.e.

V (~r) = V (r) ; (31)

then the symmetry group of the Hamiltonian is the rotational group in 3-dimensions

SO(3).

The group SO(3) is a three-parameter group (three parameters are necessary in order

to characterize a rotation, e.g. three Euler angles). Each rotation in a 3-dimensional

space through an arbitrary angle around an arbitrary oriented axis can be represented by

an operator

D̂(�; �; ) = exp (�i�Ĵz) exp (�i�Ĵy) exp (�iĴz) ; (32)

where 0 � � � 2�, 0 � � < �, 0 �  < 2�. A very well-known matrix representation of

such operators can be obtained in the basis spanned by the eigenfunctions of the angular

momentum operator Ĵ2 and its projection Ĵz,

Ĵ2jjmi = j(j + 1)jjmi

Ĵzjjmi = mjjmi ;
(33)

and this is the so-called Wigner D-functions

D
(j)

mm0(�; �; ) � hjmjD̂(�; �; )jjm0i = hjmj exp (�i�Ĵz) exp (�i�Ĵy) exp (�iĴz)jjm
0i :
(34)

For a given j, the dimension of the representation D(j) is equal to (2j + 1) since m;m0 =
�j;�j + 1; : : : ; j � 1; j.

Example 5

An example of the accidental degeneracy is given by the LMR-technique. Suppose that

a nucleus is placed in an external electric �eld with a non-zero gradient and a static

magnetic �eld, such that the direction of the electric �eld gradient coincides with the

magnetic �eld axis. The Hamiltonian of such a system has an SO(2) symmetry and as

we have seen in the Example 3, its levels will be non-degenerate and can be labelled by

m, a projection of the angular momentum on the axis of the �eld. However, a change of

the value of the magnetic �eld will lead to sudden crossings of the levels belonging to two

di�erent irreducible representations D(m) of the group SO(2), e.g., m = 0 and m = �1,
i.e. at certain values of the magnetic �eld strength doubly degenerate levels appear. This

phenomenon is an accidental degeneracy.

Example 6

Let us consider now two particular cases of the potential energy of a system, namely, the

harmonic oscillator potential

Vho(~r) =
m!2r2

2
; (35)
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and the Coulomb potential

VC(~r) = �
Ze2

r
: (36)

For example, the Hamiltonian

H(~r) = �
�h2

2m
�+

m!2r2

2
; (37)

describes the motion of a nucleon in a nuclear mean-�eld, while

H(~r) = �
�h2

2m
��

Ze2

r
; (38)

is the Hamiltonian of the hydrogen-like atom.

Obviously, since the potential energy does not depend on the angles, both Hamiltoni-

ans are invariant with respect to the rotational group SO(3) and, in both cases, the energy

levels will correspond to certain irreducible representations of the SO(3) group D(l). This

means that the levels can be characterized by a quantum number l, the eigenvalue of the
orbital angular momentum operator l̂, and they will be (2l+1)-fold degenerate (let us at

this moment not take into account the possible spin of the particles, like of a nucleon or

of an electron).

However, we know that in the spectra of both Hamiltonians a higher degeneracy is

present. The energy levels of the harmonic oscillator EN = (N + 3
2
)�h! depend on the

principle quantum number N = 2n+ l, where n is a radial quantum number and l is the

orbital angular momentum. For each N , l takes the values l = N;N � 2; N � 4; : : : ; 1 or

0 (then n = (N � l)=2). The total degeneracy of each oscillator level labelled by N is
1
2
(N +1)(N+2) (for spin-less particles). Thus each level contains a number of irreducible

representations of SO(3) D(l), i.e. it corresponds to a reducible representation of this

group.

Similarly, the energy levels of the hydrogen atom are given by

En = �
mZ2e4

2�h2n2
; (39)

and for each n, the orbital angular momentum takes the values l = 0; 1; 2; : : : ; n � 1,

that results in a total degeneracy n2. Thus each level contains a number of irreducible

representations D(l) of SO(3).

This systematic occurrence of the accidental degeneracy suggests that in each case

there exists a higher symmetry group such that the energy levels of a system correspond

to irreducible representations of this group. It can be shown that the symmetry group

of the harmonic oscillator potential is a unitary group U(3), while the symmetry group

of the Coulomb potential is the orthogonal group in 4 dimensions SO(4). Both groups

contain the group SO(3) as a subgroup:

SO(3) � U(3) and SO(3) � SO(4)
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2.2 Perturbation theory

Let us consider the Hamiltonian H0 which is invariant under its symmetry group G.

Suppose that now the system is subjected to a perturbation V which is invariant under

group G0. If V has symmetry at least as great as H0, then the total Hamiltonian H =

H0 + V will be of the symmetry G and the types of the levels will be unchanged by the

perturbation.

However, if V has a lower symmetry than H0, e.g. the group G0 is a subgroup of

G, then the symmetry group of the total Hamiltonian H = H0 + V will be G0, and the

types of the levels will be changed by the perturbation. The levels of the unperturbed

HamiltonianH0 correspond to the irreducible representations D(G) of the groupG. These

representations may be reducible with respect to the group G0 (let us call them D0(G)):

D(G) =
X


mD
0()(G) (40)

(here sum denotes the direct sum of the representations). This means that from the wave

functions  i, i = 1; : : : ; l which span the basis of the irreducible representation D(G),
we can construct the linear combinations  0

i
such that they can be divided into smaller

subsets  0
i
, i = 1; : : : ; k,  0

j
, j = k+1; : : : ; k+m, etc., which transform among themselves

according to the irreducible representations of the group G0. As a result, the energy levels
of the HamiltonianH0 will be splitted and the �nal spectrum of H will consist of the levels

corresponding to the irreducible representations of the group G0.
In order to estimate the magnitude of the splitting, we have to follow the receipt of

the standard perturbation theory:

�Ei = h 0
i
jV j 0

i
i : (41)

Example

Consider a system having the symmetry O. Suppose a perturbation is applied which re-

duces the symmetry to C3v. How will the 3-fold degenerate levels be splitted?

From the table of characters for the groupO it is seen that this group has two di�erent

3-dimensional irreducible representations, labelled by F1 and F2. The characters are given

in the table below for all 5 classes of elements:

E C3 (8) C2
4 (3) C2 (6) C4 (6)

F1 3 0 �1 �1 1

F2 3 0 �1 1 �1

D3 group has six following elements: E; C3, C
2
3 ; three rotations C2. Let us re-write

the character table for this group and below add two lines with the characters of the

representations F1 and F2 of the group O for the elements which are common with the

group D3:
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E C3 (2) C2 (3)

A1 1 1 1

A2 1 1 �1
E 2 �1 0

F1 3 0 �1
F2 3 0 1

In order to �nd how many times each of the representations A1, A2, E of the group

D3 enters in the representations F1 and F2 of the group O, we should use the formula

(49) of the previous lecture:

m� =
1

n

X
G

�(�) �(G)�(G) ; (42)

which can be re-written using the classes as

m� =
1

n

X
C

nC�
(�) �(C)�(C) : (43)

Substituting the characters from the table, we have for F1:

mA1
=

1

6
(1 � 1 � 3 + 2 � 1 � 0 + 3 � 1 � (�1)) = 0 ;

mA2
=

1

6
(1 � 1 � 3 + 2 � 1 � 0 + 3 � (�1) � (�1)) = 1 ;

mE =
1

6
(1 � 2 � 3 + 2 � (�1) � 0 + 3 � 0 � (�1)) = 1 ;

(44)

from where we get the �nal result:

F1 = A2 � E : (45)

This means that the 3-fold degenerate level of the Hamiltonian H0 corresponding to the

irreducible representation F1 of the group O will be splitted by the perturbation V into

two levels, 1-fold and 2-fold degenerate, corresponding to the irreducible representations

A2 and E of the group D3. Similarly, we will get for F2:

F2 = A1 � E : (46)

2.3 Coupled systems

Let us consider two systems, with coordinates ~r1 and ~r2, respectively. The Hamiltonians

for the two systems, H1 and H2, have the same form, and are invariant under the same

group G. If we consider the system 1 alone, we can classify its states according to the

irreducible representations of the symmetry groupG and we will denote its wave functions

by  
(�)
i (~r1). Similarly, for the system 2,  

(�)
j (~r2). Here � and � refer to di�erent irreducible

representations of the group G.
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2.3.1 No interaction

Let us suppose that the two systems are completely independent from each other. Then

the total Hamiltonian of the system is H = H1 + H2 and it is invariant with respect to

the group G. Its eigenvalue, E = E1+E2, will belong to the representation D
(���)(G), if

the levels E1 and E2 correspond to the representations D(�)(G) and D(�)(G), respectively.

The eigenfunctions of H are the products  
(�)
i (~r1) 

(�)
j (~r2) and they form a basis of the

representation D(���)(G).

2.3.2 With interaction

Suppose that two systems interact with each other, i.e. the total Hamiltonian is H =

H1 + H2 + V12, and that the interaction term has the symmetry at least as great as

of H1, H2. The interaction provides that the levels corresponding to the reducible in

general representation D(���)(G) of the group G, i.e. l�l�-fold degenerate, be splitted.

The resulting degeneracy of the levels can be obtained from the decomposition of the

representation D(���)(G) into irreducible components D()(G):

D(���)(G) =
X


mD
()(G) (47)

This expansion is called a Clebsch-Gordan series. The values m can be found from

m =
1

n

X
C

nC�
() �(C)�(���)(C) ; (48)

where �()(C) are the character in the representation D()(G) and �(���)(C) are the

characters in the representation D(���)(G).

This means that we have just reorganized the space of the wave functions  
(�)
i (~r1) 

(�)
j (~r2),

i.e. we have found their certain linear combinations which transform according to di�erent

irreducible representations D()(G):

	
()t
k

(~r1; ~r2) =
X
i;j

(�i�jjkt) 
(�)
i (~r1) 

(�)
j (~r2) : (49)

The wave functions  
(�)
i (~r1) 

(�)
j (~r2) provide a basis of the representation D(���)(G) of

the group G, while the wave functions 	
()t
k

(~r1; ~r2) provide a basis of the representation

D()(G) (the index t is required in order to distinguish between the functions with equal 
and k in case the representation D()(G) enters the decomposition (47) two or more times.

The coe�cients of this transformation (�i�jjkt) are called Clebsch-Gordan coe�cients

for the group G.

From the mathematical point of view, the Clebsch-Gordan coe�cients perform the

decomposition of the direct product of two irreducible representations of a group into ir-

reducible components. The physical meaning of the Clebsch-Gordan coe�cients is that

j(�i�jjkt)j2 represents the probability of �nding each of the subsystems in the states

characterized by the wave functions  
(�)
i (~r1) and  

(�)
j (~r2), respectively, while the total
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system is in a state characterized by the wave function the wave functions 	
()t
k

(~r1; ~r2).

Hence, the Clebsch-Gordan coe�cients are normalized:

X
i;j

j(�i�jjkt)j2 = 1 : (50)

Since the wave functions  
(�)
i (~r1) 

(�)
j (~r2) form an orthogonal set of functions, the functions

	
()t
k

(~r1; ~r2) can also be orthogonalized. This means that the transformation (51) is unitary

and there exists an inverse transformation

 
(�)
i (~r1) 

(�)
j (~r2) =

X
;k;t

(�i�jjkt)�	
()t
k

(~r1; ~r2) (51)

and X
i;j

(�i�jjkt)�(�i�jj0k0t0) = �0�kk0�tt0 ;X
;k;t

(�i�jjkt)�(�i0�j 0jkt) = �ii0�jj0 :
(52)

Example 1

Consider an atom of
4
He placed in a crystal of C3v symmetry. Classify two-electron wave

functions.

The symmetry group of a free atom is the rotational group SO(3), so the individual

electrons can be assigned to angular momenta l1, l2, according to the irreducible repre-

sentations of this group. Let us put the atom in a crystal. If we �rst neglect the Coulomb

interaction between the electrons and assume that the �eld produced by the ions in the

lattice is large, the states of the individual electrons will be classi�ed according to the

representations of the symmetry group of the crystalline �eld, i.e. a1, a2 and e in our case

of the group C3v (we denote the representations for the individual electrons by the small

letters and reserve the capital letters for the total system).

If the �rst electron is in a state belonging to the representation a1 and the second is in

a state belonging to the representation e, then the states of the total system will belong

to the representation a1 � e = E. If both the electrons are in states belonging to the

representation e then the total system will be in a state belonging to the representation

e � e = A1 � A2 � E (such decompositions are obtained from (48)). Continuing in this

way, we get the table:

a1 � a1 A1

a1 � a2 A2

a2 � a2 A1

a1 � e E

a2 � e E

e� e A1 � A2 � E

which shows the symmetry of all levels of the system.

If we do not take into account the Coulomb interaction between the electrons, then

it does not make any di�erence which type of notations to use in order to classify the
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two-electron states: left or right column of this table. The degeneracy of the levels will

be the same.

However, if we now take into account the interaction between the electrons, which

has at least SO(3) symmetry, then we get the splitting of the levels according to de-

composition of the direct product of this representations (left column) to the irreducible

components (right column). In fact, only the last 4-fold degenerate level will be splitted

into two non-degenerate and one 2-fold degenerate levels, as seen from the last row of this

table.

What are now the basis functions of the total system? For non-interacting systems,

the product of two wave functions were valid. With interaction, we should �nd the proper

linear combinations of these wave functions. E.g., since a1 � a1 = A1, it means that

	
(A1)
1 (~r1; ~r2) =  

(a1)
1 (~r1) 

(a1)
1 (~r2) ; (53)

so the transformed wave function still coincides with the direct product. In the notations of

the formula (51), it means that the only Clebsch-Gordan coe�cient (a1; 1; a1; 1jA1; 1) = 1.

Similarly, we �nd for the 2-dimensional representation a1�e = E, the two components

of the basis functions are just the products

	
(E)
1 (~r1; ~r2) =  

(a1)
1 (~r1) 

(e)
1 (~r2) ; 	

(E)
2 (~r1; ~r2) =  

(a1)
1 (~r1) 

(e)
2 (~r2) : (54)

The Clebsch-Gordan coe�cients are (a1; 1; e; 1jE; 1) = 1 and (a1; 1; e; 2jE; 2) = 1, and so

on.

For the decomposition e� e = A1 � A2 � E we have:

	
(A1)
1 (~r1; ~r2) =

1p
2

�
 
(e)
1 (~r1) 

(e)
2 (~r2) +  

(e)
2 (~r1) 

(e)
1 (~r2)

�
;

	
(A2)
1 (~r1; ~r2) =

1p
2

�
 
(e)
1 (~r1) 

(e)
2 (~r2)�  

(e)
2 (~r1) 

(e)
1 (~r2)

�
;

	
(E)
1 (~r1; ~r2) =  

(e1)
1 (~r1) 

(e)
1 (~r2) ;

	
(E)
2 (~r1; ~r2) =  

(e1)
2 (~r1) 

(e)
2 (~r2) :

(55)

The coe�cients in these equations are the Clebsch-Gordan coe�cients for the group C3v.

For example, (e; 1; e; 2jA1; 1) =
1p
2
and (e; 2; e; 1jA2; 1) = � 1p

2
.

Example 2

Consider a nucleon in a Woods-Saxon potential taking into account a spin-orbit coupling.

Classify the single-particle states.

The Hamiltonian for a nucleon in a Woods-Saxon potential

H(~r) = �
�h2

2m
�+

V0

1 + exp ( r�R0

a
)
; (56)

is invariant with respect to SO(3) group in a coordinate space and thus its levels can be

labelled by l, the eigenvalue of the orbital angular momentum. A nucleon also possesses a

spin s = 1=2. The Hamiltonian is invariant with respect to the rotations in a spin space,
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i.e. the operator ŝ commutes with the Hamiltonian. This means that its levels can be

also labelled by s, the eigenvalue of the spin operator.

In total, we �nd that the symmetry group of the Hamiltonian (56) is a direct product

of two rotational groups SOl(3)
SOs(3), and its energy levels correspond to the repre-

sentation of this group D(l)
D(s). The basis of this representation is the direct product of

the eigenstates of the orbital angular momentum operator jlmli and of the spin operator

jsmsi:
jlmlsmsi � jlmlijsmsi (57)

and for �xed l and s there are (2l+1)(2s+1) such states. So, we have 0s, 0p, 0d, 1s, etc

sequence of levels (in these notations, numbers are the radial quantum number and the

letter correspond to the value of the orbital angular momentum).

The Clebsch-Gordan series (47) for the group SO(3) looks like

D(l)(G)
D(s)(G) =
l+sX

j=jl�sj
D(j)(G) : (58)

For a given j, the irreducible representation D(j)(G) is (2j+1)-fold degenerate. The basis

of the representation can be constructed from the states (57):

jlsjmi =
X

ml;ms

(lmlsmsjjm) jlmlijsmsi ; (59)

where the coe�cients (lmlsmsjjm) in this expression are the Clebsch-Gordan coe�cients

of the group SO(3). This coe�cients do not require the introduction of the index t, since
for the group SO(3), in the decomposition (58) each of the irreducible representations

D(j)(G) with a �xed j enters only once.

Note that while there is no spin-orbit interaction in the Hamiltonian (57), both descrip-

tion of the levels in terms of the representations D(l)
D(s)(G) and D(j)(G) are equivalent,
as well as the description of the eigenstates as jlmlijsmsi or jlsjmi (the degeneracy of

the levels will be (2l + 1)(2s+ 1)).

Let us now introduce the spin-orbit interaction in the Hamiltonian:

H(~r) = �
�h2

2m
�+

V0

1 + exp (� r�R0

a
)
+ f(r)(~l � ~s) : (60)

This Hamiltonian is invariant with respect to the group SOj(3). The spin-orbit interac-

tion splits the (2l + 1)(2s + 1)-fold degenerate levels into (2j + 1)-fold degenerate levels

according to the irreducible representations D(j)(G). This splitting is called a spin-orbit

splitting. The resulting levels can be denoted as 0s1=2, 0p1=2, 0p3=2, 0d3=2, 0d5=2, 1s1=2, etc
(here the half-integer values refer to the total angular momentum j).

In order to estimate the value of this splitting we have to follow the receipt (41) and

calculate the matrix elements

�Enlsjm = hnlsjmjf(r)(~l � ~s)jnlsjmi =

8>><
>>:

+
1

2
lhf(r)inl for j = l +

1

2

�
1

2
(l + 1)hf(r)inl for j = l �

1

2

(61)

In the last formula the values of the radial quantum number n is also given, since the

total wave functions will depend on it.
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