
Lecture 6. The Nuclear Shell Model.
One-Particle Problem

1 Basic principles of the nuclear shell model

The basic assumption of the nuclear shell model is that to a �rst approximation each nucleon

moves independently in a potential that represents the average interaction with the other

nucleons in a nucleus. This independent motion can be understood qualitatively from a

combination of the weakness of the long-range nuclear attraction and the Pauli exclusion

principle.

The complete Schr�odinger equation for A nucleons reads as

Ĥ	(1; 2; : : : ; A) = E	(1; 2; : : : ; A) (1)

where Ĥ contains single nucleon kinetic energies and two-body interactions

Ĥ =
AX
i=1

 
�
�h2

2m
�i

!
+

AX
i<j=1

W (i; j) ; (2)

and 	(1; 2; : : : ; A) is a totally antisymmetric wave function, while i denotes all coordinates

~ri; ~si;~ti of a given particle (i = 1; 2; : : : ; A).
We can always formally re-write the Hamiltonian (2), adding and subtracting a potential

of the form
PA

i=1 U(i):

Ĥ =
AX
i=1

 
�
�h2

2m
�i

!
+

AX
i=1

U(i) +
AX

i<j=1

W (i; j)�
AX
i=1

U(i) =

AX
i=1

"
�
�h2

2m
�i + U(i)

#
+

AX
i<j=1

W (i; j)�
AX
i=1

U(i) = Ĥ(0) + Ĥ(1) ;

(3)

where we denoted a sum of single-particle Hamiltonians as Ĥ(0),

Ĥ(0) =
AX
i=1

"
�
�h2

2m
�i + U(i)

#
�

AX
i=1

ĥ(i) ; (4)

and H(1) is called a residual interaction. The assumption of the existence of a nuclear

average potential allows to hope that there exists such a potential
PA

i=1 U(i), that the residual

interaction H(1) is small.

There exist a few approaches to deal with this many-body problem.

1. Naive shell model We suppose that U(i) is a known suitable potential (e.g., the

harmonic oscillator potential, or the Woods-Saxon potential, or the square-well), solve

the Schr�odinger equation for Ĥ(0),

Ĥ(0)j�ki = E
(0)

k j�ki ; (5)

and neglect the residual interaction Ĥ(1).
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2. Realistic shell model First, we repeat the procedure indicated in the previous item.

Then we take into account the residual interaction Ĥ(1), diagonalizing it in the basis

of functions j�ki. The standard shell model codes acts in this way, using the harmonic

oscillator potential.

3. We can try to construct a one-body potential
PA

i=1 U(i) which would be the best

approximation to the two-body potential
PA

i<j=1W (i; j), such that Ĥ(1) � 0. This can

be reached by the so-called Hartree-Fock procedure.

In Sections 2 and 3 we consider a single-particle problem with the harmonic oscillator

and the Woods-Saxon potentials, respectively. In Section 4 we discuss the basic principles of

the naive and realistic shell models. Section 5 is devoted to the Hartree-Fock method. The

problems are given in Section 6.

2 Harmonic Oscillator Potential

Let us suppose that each particles move in a harmonic oscillator potential, i.e.

ĥ = �
�h2

2m
�+

m!2r2

2
: (6)

Then the Schr�odinger equation

ĥ�(~r) = ��(~r) (7)

is separable in radial and angular coordinates. The eigenfunctions are given by the products

�nlm(~r) = Rnl(r)Ylm(�; �) ; (8)

where Ylm(�; �) are spherical harmonics (they always appear for a spherically symmetric

potential).

The radial wave functions for the harmonic oscillator potential are given by

Rnl(r) = Nnl r
l exp

 
�
r2

2b2

!
L
l+1=2
n�1

 
r2

b2

!
; (9)

where b =
q

�h
m!

and L
l+1=2
n�1

�
r2

b2

�
are Laguerre polynomials (they are tabulated for given n

and l, see e.g. [1]). The normalization factor Nnl is de�ned by the condition

1Z
0

r2R2
nl(r)dr = 1 : (10)

The energy eigenvalues are given by

�N = �h!

�
2n+ l �

1

2

�
= �h!

�
N +

3

2

�
; (11)

with
N = 0; 1; 2; : : : ;

l = N;N � 2; : : : ; 1 or 0

n = (N � l + 2)=2 :
(12)
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The energy level with a given N is called an oscillator shell.

The resulting levels can be denoted as

N = 0 1s

N = 1 1p

N = 2 1d, 2s

N = 3 1f , 2p,
N = 4 1g, 2d, 3s

: : :
(here the numbers refer to n and the letters denote l).

Each oscillator shell contains orbitals with either even or odd l and it is either even or

odd with respect to the parity operation P̂ (~r! �~r):

P̂ �nlm(~r) = P̂ (Rnl(r)Ylm(�; �)) = Rnl(r)P̂Ylm(�; �)) =

Rnl(r)(�1)lYlm(�; �)) = (�1)l�nlm(~r) :
(13)

The total degeneracy of the Nth oscillator shell is


 = 2
NX

l=0 or 1

2(2l + 1) = 2(N + 1)(N + 2) ; (14)

where we take into account the intrinsic spin s = 1=2 and isospin t = 1=2 of nucleons.

The distance between two di�erent shells is estimated as

�h! = 41A�1=3MeV : (15)

The degeneracy of the oscillator shells can be removed by adding the spin-orbit coupling

term:

ĥ = �
�h2

2m
�+

m!2r2

2
+ f(r)(~l � ~s) : (16)

Taking into account the intrinsic spin of the nucleons, we can write down the single-

particle wave functions as

�nlsjm(~r; ~s ) = Rnl(r)
h
Yl(�; �)� �1=2(~s)

i(j)
m

; (17)

where the orbital and the spin angular momenta are coupled to a total angular momentum

j. These wave functions are eigenfunctions of the Hamiltonian (16). Taking into account

the isospin of the nucleons, the �nal single-particle wave functions are

�nlsjm;tmt
(~r; ~s;~t ) = Rnl(r)

h
Yl(�; �)� �1=2(~s)

i(j)
m
�1=2(~t) : (18)

The wave function (18) is a coordinate-spin-isospin representation of a state vector jnlsjm; tmti,
i.e.

h~r; ~s; ~t jnlsjm; tmti � �nlsjm;tmt
(~r; ~s;~t) (19)

In future we will use the notations of state vectors. Since always s = 1=2 and t = 1=2, we

will often suppress the indices s and t. Moreover, we will use only space-spin part jnlsjmi,
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while calculating isoscalar operators. To get the value of the spin-orbit splitting we will

calculate the matrix elements

��nlsjm = hnlsjmjf(r)(~l � ~s)jnlsjmi =

8>><
>>:

+
1

2
lhf(r)inl for j = l +

1

2

�
1

2
(l + 1)hf(r)inl for j = l �

1

2

(20)

Here

hf(r)inl = hnljf(r)jnli =
Z
R�

nlRnlf(r)r
2dr : (21)

Each oscillator shell splits into orbitals:

N = 0 1s1=2
N = 1 1p1=2; 1p3=2
N = 2 1d5=2; 1d3=2; 2s1=2
N = 3 1f7=2; 1f5=2; 2p3=2; 2p1=2
N = 4 1g9=2; 1g7=2; 2d5=2; 2d3=2; 3s1=2
: : : : : :
(here the half-integer values refer to the total angular momentum j).

3 Woods-Saxon Potential

The more realistic representation of the nuclear mean �eld is given by the Woods-Saxon

potential:

ĥ = �
�h2

2m
�+

U0

1 + exp
�
r�R0

a

� : (22)

Usually U0 � �50 MeV, R0 = r0A
1=3 with r0 � 1:2 fm and a di�useness a � 0:5 fm.

The wave functions have a form (8), but the radial wave functions Rnl(r) as well as the

eigenvalues � can be found only numerically. Each eigenvalue is characterized by a certain

n and l, and the eigenvalues with di�erent n and l are non-degenerate. The resulting levels

can be labelled by nl.

The total degeneracy of the orbital with a given l is


 = 4(2l + 1) ; (23)

if we take into account spin and isospin of nucleons.

Addition of the spin-orbit interaction to the Hamiltonian (22),

ĥ = �
�h2

2m
�+

U0

1 + exp
�
r�R0

a

� + f(r)(~l � ~s) ; (24)

leads to the splitting of the 2(2l + 1)-fold degenerate levels into (2j + 1)-fold degenerate

levels. The resulting levels can be denoted as 1s1=2, 1p3=2, 1p1=2, 1d5=2, 1d3=2, 2s1=2, etc.

4



In order to estimate the value of this splitting we have calculate the matrix elements

��nlsjm = hnlsjmjf(r)(~l � ~s)jnlsjmi =

8>><
>>:

+
1

2
lhf(r)inl for j = l +

1

2

�
1

2
(l + 1)hf(r)inl for j = l �

1

2

(25)

Here the values hf(r)inl di�er from those which were calculated with the harmonic oscillator

wave functions in the previous section.

4 Applications of the harmonic oscillator and theWoods-

Saxon potentials

4.1 Shell model with pure con�gurations

In the naive shell model we neglect the residual interaction H(1). The solution of the

Schr�odinger equation with a Hamiltonian H(0) (4) can be given by any product of single-

particle wave functions

�k1(1)�k2(2) : : : �kA(A) : (26)

Here each ki labels the single-particle state jnlsjm; tmti, while (i) refers to all coordinates of a
nucleon, i � (~ri; ~si;~ti). The single-particle wave functions are solutions of the corresponding

Schr�odinger equations

ĥ(i)�k(i) = �k�k(i) : (27)

This can be a single-particle equation with a harmonic oscillator potential, (16), or with

Woods-Saxon potential, (24), or anything else.

However, since we are dealing with the fermions of two sorts, protons and neutrons, the

correct shell model wave function should be antisymmetric under permutation of any two

nucleons with respect to its space, spin and isospin coordinates and it should possess de�nite

values of the total angular momentum J and the total isospin T . So, we can construct the

�nal shell model wave functions as certain linear combinations of functions (26), totally

antisymmetric and coupled to certain J and T . We will denote them as

��(1; 2; : : : ; A) (28)

where � = (J; T ), i.e.

Ĥ(0)��(1; 2; : : : ; A) = E
(0)

� ��(1; 2; : : : ; A) : (29)

In this section we will think of �� as of the solution of the problem. The total energy is

thus given by

E
(0)

� =
AX
i=1

�ki : (30)

Such a model is useful to get simple single-particle estimations of di�erent physical ob-

servables, assuming that the properties are determined only by the last nucleon. Here we

consider the operators of electric and magnetic multipole transitions in the proton{neutron
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formalism, i.e. we explicitly imply that the valence particle is either proton or neutron (the

isospin formalism will be considered later).

The single-particle electric multipole operator reads

T̂ (E ; LM) = erLYLM(�; �) ; (31)

where e refers to either free (e(p) = e, e(n) = 0) or e�ective nucleon charges.

The reduced probability of the EL-transition from the initial to the �nal state is

B(EL; Ji ! Jf ) =
1

2Ji + 1
jhJf jjT (E ; L)jjJiij2 : (32)

In a single-particle model Ji = ji and Jf = jf . Thus we have

B(EL; ji ! jf) =
1

2ji+1
jhnf lfsfjf jjT (E ; L)jjnilisijiij2 =

1

2ji+1
jhnf lfsfjf jjerLYL(�; �)jjnilisijiij2 =

e2 1

2ji+1
hrLi2jhlfsfjf jjYL(�; �)jjlisijiij2 :

(33)

Here we employed the fact that the total single-particle wave functions jnlsji is a product

of the radial part jnli and the angular part jlsji and we introduced a notation

hrLi =
Z
R�

nf lf
(r)rL+2Rnili(r)dr (34)

(an additional r2 arises from the normalization (10)).

Using formula (60) from Lecture 5 with U (k1) = YL(�; �) and V (k2) = 1, and the reduced

matrix element of the spherical functions (see Problem 4 of Lecture 5), we obtain from (33):

B(EL; ji ! jf ) = e2 1

4�
hrLi2(2jf + 1)(2li + 1)(2L+ 1)(li0L0jlf0)2

8><
>:

1

2
lf jf

L ji li

9>=
>;

2

=

e2 1

4�
hrLi2(2jf + 1)(2L+ 1)

0
B@ ji jf L

1

2
�1

2
0

1
CA
2

:

(35)

The only unknown ingredient in this expression if the matrix element (34), which can be

calculated using the explicit radial wave functions.

The same can be done to estimate the static electric multipole moments in a single-

particle state. For example, the electric quadrupole operator of a single particle reads

Q̂ =

s
16�

5
er2Y20 : (36)

The electric quadrupole moment is de�ned as

Q = hJM = J jQ̂jJM = Ji : (37)

For a single-particle state we have

Q =

s
16�

5
hnlsjjjer2Y20jnlsjji = �

2j � 1

2j + 2
ehr2i : (38)
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Similarly, we can estimate the magnetic multipole transitions. The single-particle mag-

netic multipole operator has a form

T̂ (M; LM) = r
�
rLYLM(�; �)

�� 2gl

L+ 1
~l + gs~s

�
�N ; (39)

where the g-factors of free nucleons are gl(p) = 1, gl(n) = 0, gs(p) = 5:58 and gs(n) = �3:82,
and �N = e�h

2mc
.

The reduced probability of the ML-transition from the initial to the �nal state is

B(ML; Ji ! Jf ) =
1

2Ji + 1
jhJf jjT (M; L)jjJiij2 : (40)

In a single-particle model Ji = ji and Jf = jf :

B(ML; ji ! jf ) =
1

2ji + 1
hnf lfsf jf jjT (M; L)jjnilisijiij2 =

hrL�1i2hlf jjYL�1(�; �)jjlii2(2jf + 1)(2L+ 1)
2

L2
64(�1)jf+lf+1=22gl

L

L + 1

q
ji(ji + 1)(2ji + 1)

8><
>:

1

2
lf jf

L� 1 ji li

9>=
>;
8><
>:

jf L ji

1 ji L� 1

9>=
>;+

s
3

2

�
gsL� 2gl

L

L + 1

�
8>>>>><
>>>>>:

lf
1

2
jf

li
1

2
ji

L� 1 1 L

9>>>>>=
>>>>>;

3
777775

2

�2N :

(41)

Similarly, we can estimate the static magnetic multipole moments. For example, the

magnetic dipole operator of a single nucleon is given by

�̂ =
�
gl~l + gs~s

�
�N (42)

(note that the radial dependence disappears because rL�1 = 1 for L = 1). The magnetic

dipole moment is de�ned as

� = hJM = J j�̂jJM = Ji : (43)

In order to estimate it in a single-particle state we calculate

� = hnlsjjj
�
gl~l + gs~s

�
�N jnlsjji ; (44)

getting the Schmidt values (see Problem 2).

4.2 Shell model with con�guration mixing

In the realistic shell model, we have to take into account Ĥ(1), i.e. we solve the eigenvalue

problem

Ĥj	pi = Epj	pi : (45)
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In this case, we use the solutions of Ĥ(0), functions �� (28), only as a basis of the diagonal-

ization of the full Hamiltonian Ĥ.

This means that we are looking for the wave function of the system in the form

j	pi =
gX

k=1

akpj�ki ; (46)

where g denotes the number of pure con�gurations j�ki considered, i.e. it is related to the

model space used. Usually, the model space incorporates all possible con�gurations of N�

valence protons and N� valence neutrons in the partially �lled orbitals, while the rest is

considered as an inert core. Since the Hamiltonian Ĥ is invariant in the space and isospace,

its eigenstates are characterized by good values of the total angular momentum J and isospin

T . In other words, the functions (	�)p and (��)k have the same labels � which we suppressed

in the equation (46) for the simplicity.

Substituting (46) into equation (45), we get

(Ĥ(0) + Ĥ(1))
gX

k=1

akpj�ki = Ep

gX
k=1

akpj�ki : (47)

Since

Ĥ(0)j�ki = E
(0)

k j�ki ; (48)

the matrix elements of the Hamiltonian Ĥ are given by

Hlk � h�ljĤj�ki = E
(0)

k �lk +H
(1)

lk ; (49)

where

H
(1)

lk = h�ljH(1)j�ki : (50)

Thus we have to solve a system of equations

gX
k=1

Hlkakp = Epalp ; (51)

that means to diagonalize the matrix Hlk and to �nd the eigenvalues Ep and the coe�cients

akp. Since the basis is orthogonal and normalized, the eigenvectors belonging to di�erent

eigenvalues are necessarily orthogonal and can be normalized such that

gX
k=1

akpakp0 = �pp0 for Ep 6= Ep : (52)

Equation (51) can be re-written as

gX
l;k=1

alp0Hlkakp = Ep�pp0 ; (53)

or in a matrix form

A�1HA = E ; (54)

where on the right-hand side is a diagonal matrix.
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The diagonalization can be performed even by hand for small matrices, such as (2�2) or

(3�3). For higher dimensions there exist di�erent numerical algorithms: the Jacobi method

g � 50, the Householder method 50 � g � 200, the Lanczos method 200 � g and for giant

matrices.

We can estimate the dimension of the con�guration space for N� protons in the (nlj)

orbital and N� neutrons in the (n0l0j 0) orbital, i.e. just to count all possible con�gurations

taking into account 2j + 1 and 2j 0 + 1 degeneracies. It is given by binomial coe�cients0
B@ 2j + 1

N�

1
CA
0
B@ 2j 0 + 1

N�

1
CA (55)

This is the total dimension of the space. We can reduce it taking into account invariance of

the Hamiltonian with respect to the total angular momentum J and isospin T , i.e. we can
diagonalize the operators J2 and T 2, in order to construct from all possible basis functions,

the number of which is given by (55), those which possess certain J and T .
The only ingredient which was not discussed here is the residual interaction, or the Hamil-

tonian Ĥ(1). This will be the subject of the next lecture.

Comment

There exist one particular case when we do not need the residual interaction in a realistic

shell model. This is the case when we have only one particle above the inert core. Such

nuclei are very important since they provide information about the relative single-particle

energies.
17O can be considered as a core of 16O plus an additional neutron in the sd shell model

space. Their binding energies are EB(
17O) = �131:77 MeV and 16O is EB(

16O) = �127:62
MeV. Since the ground state of 17O has the spin and parity 5=2+, then

�1d5=2 = EB(
17O)� EB(

16O) = (�131:77 + 127:66) MeV = �4:15 MeV : (56)

17O has an excited state of spin and parity 1=2+ at the energy Ex = 0:87 MeV. Thus,

the single-particle energy of a neutron in 2s1=2 is

�2s1=2 = EB(
17O)� EB(

16O) + Ex = (�131:77 + 127:66 + 0:87) MeV = �3:28 MeV : (57)

5 Hartree-Fock approximation

The Hartree-Fock method is a tool to �nd the average potential
PA

i=1 U(i) which is the best

approximation to the two-body potential
PA

i<j=1W (i; j).

Let us search for a wave function in the form

�(1; 2; : : : ; A) =
1
p
A!

��������������

�k1(1) �k1(2) : : : �k1(A)

�k2(1) �k2(2) : : : �k2(A)

: : :

�kA(1) �kA(2) : : : �kA(A)

��������������
(58)
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and require that the eigenvalue of the Hamiltonian (2) in the state (58) is minimal:

h�jHj�i = min ; (59)

on in other words the variation

�h�jHj�i = 0 : (60)

Let us assume that the two-body interaction is local and does not depend on spin or

isospin. The condition (60) can be reduced to the system of equations called the Hartree-

Fock equations, which in the coordinate representation has a form:

�
�h2

2m
��k(~r) + UH(~r)�k(~r)�

Z
UF (~r; ~r

0)�k(~r
0)d~r 0 = �k�k(~r) : (61)

In this equation we get two terms as a potential energy:

UH(~r) =
AX
j=1

Z
��j(~r

0)V (~r; ~r 0)�j(~r
0)d~r 0 (62)

which is called a direct, or Hartree term, and

UF (~r; ~r
0) =

AX
j=1

��j(~r
0)V (~r; ~r 0)�j(~r) ; (63)

which is called an exchange, or Fock term, since it appears when we take into account that

our wave functions should be antisymmetrized.

The Hartree-Fock equations (61) are solved by iterations. First, we take a set of trial

wave functions, e.g. the harmonic oscillator eigenfunctions �(~r), and calculate the direct

(62) and exchange (63) potentials. Then we input the calculated potentials to the equations

(61) and solve them, getting thus the wave functions �
(0)

k (~r) and the single-particle energies

�
(0)

k after the �rst iteration. These wave functions will be di�erent from the trial ones. The

wave functions �
(0)

k (~r) are now used in order to get the new values of the potentials (62) and

(63), which then are input again in Hartree-Fock equations and we get the set of the wave

functions �
(1)

k (~r) and the single-particle energies �
(1)

k after the second iteration. Continuing

in this way, we will obtain that after a large number of iterations, the wave functions used in

calculating the potentials coincide with the solutions of the Hartree-Fock equations. Thus,

the problem is solved self-consistently.
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