Lecture 7. Problems.

- 1. Obtain the lowest possible J^{π} values for (i) ²¹⁰Pb, assuming that two neutrons occupy $g_{9/2}$; (ii) ²¹⁰Bi, assuming that a proton in $h_{9/2}f_{7/2}$ and a neutron in $g_{9/2}$; (iii) ²¹⁰Po, assuming that two protons occupy $h_{9/2}$ -orbital. Compare with the experimental spectra.
- 2. Program the matrix elements $\langle j_1 j_2; JT | V | j_3 j_4; JT \rangle$ of the MSDI and print out the resulting matrix elements for *p*-shell in terms of A_T , *B* and *C* coefficients for all possible *J* and *T* values (13 two-body matrix elements).
- 3. Using the empirical single-neutron energies and the USD interaction Wildenthal and Brown (see print-out), calculate the position of 3⁺ state in ¹⁸O.
- 4. From the experimental spectrum of 90 Zr, find the difference between two-body matrix elements of the type $\langle p_{1/2}g_{9/2}; JT|V|p_{1/2}g_{9/2}; JT\rangle$ for all possible values of J and T of the interaction between two protons in $(p_{1/2}g_{9/2})$ shell model space (with respect to 88 Sr-core).
- 5. Calculate the excitation energy of 0_2^+ state in ⁵⁸Ni in the $p_{3/2}f_{5/2}$ model space, given the two-body matrix elements (from MSDI with $A_1 = 0.5$ MeV, B = C = 0): $\langle p_{3/2}p_{3/2}; J = 0, T = 1|V|p_{3/2}p_{3/2}; J = 0, T = 1 \rangle = -1$ MeV, $\langle f_{5/2}f_{5/2}; J = 0, T = 1|V|f_{5/2}f_{5/2}; J = 0, T = 1 \rangle = -1.5$ MeV, $\langle p_{3/2}p_{3/2}; J = 0, T = 1|V|f_{5/2}f_{5/2}; J = 0, T = 1 \rangle = 1.22$ MeV, and experimental single-neutron energies.