Lecture 8. Problems.

- 1. Obtain the possible J^{π} values for $\nu(d_{5/2})^3$ configuration.
- 2. Using the coefficients of fractional parentage, construct $|(d_{5/2})^3; J = 9/2^+\rangle$ state of ¹⁹O, assuming $(\nu d_{5/2})^3$ configuration for this state.
- 3. Using the coefficients of fractional parentage, construct $|(f_{7/2})^3; J = 11/2^-\rangle$ state of ⁵¹V, assuming $(\pi f_{7/2})^3$ configuration for this state.
- 4. Using the experimental single-neutron energies and the excitation energies of 2^+ and 4^+ states in ¹⁸O, calculate the position of $3/2^+$ state in ¹⁹O, assuming $(\nu d_{5/2})^3$ configuration for this state.
- 5. Using the experimental single-neutron energies and the excitation energies of 2^+ , 4^+ and 6^+ states in ⁵⁰Ti, calculate the position of lowest negative parity states in ⁵¹V, assuming $(\pi f_{7/2})^3$ configurations for these states (all possible states within this model space).
- 6. What J_f^{π} states in ¹⁹Ne are possible to populate with the reaction ¹⁸F(d,n), provided that ¹⁸F is in its ground state and the transferred proton occupies one of the *sd*-shell orbitals. What are the values of the transferred orbital angular momenta?
- 7. Calculate the spectroscopic factor for the reaction ${}^{18}O(d,p){}^{19}O$ leading to the ground state of $J^{\pi} = \frac{5}{2}^+$ in ${}^{19}O$, assuming the valence particles being in $d_{5/2}$ orbital only.
- 8. Calculate the spectroscopic factor for the reaction ${}^{50}\text{Ti}({}^{3}\text{He,d}){}^{51}\text{V}$ leading to the ground state of $J^{\pi} = \frac{7}{2}^{-}$ in ${}^{51}\text{V}$, assuming the valence particles being in $f_{7/2}$ orbital only.