Lecture 9. Problems.

- 1. Estimate for which energies of γ -quantum the long wavelength approximation for electromagnetic operators is valid.
- 2. Calculate the reduced transition probability from the first excited state to the ground state $B(E2; \frac{1}{2}^+ \rightarrow \frac{5}{2}^+)$ in ¹⁹O, for ¹⁶O being a core active particles occupying $(1d_{5/2})$ orbital.
- 3. Calculate the reduced transition probability from the first excited $\frac{3}{2}^{-}$ state to the ground $\frac{7}{2}^{-}$ state $B(E2; \frac{3}{2}^{-} \rightarrow \frac{3}{2}^{-})$ in ⁴³Sc, for ⁴⁰Ca being a core and active particles occupying $(1f_{7/2})$ orbital.
- 4. Let us assume that the total angular momentum J of a state is a coupled value of the angular momenta of two groups of nucleons, labelled by A and B with the angular momenta J_A and J_B $(\vec{J} = \vec{J}_A + \vec{J}_B)$. Let us assign g-factors g_A and g_B to the groups A and B, respectively. The magnetic moment of the system is

$$\mu = gJ\mu_N = \langle JM = J | g_A J_{Az} + g_B J_{Bz} | JM = J \rangle \mu_N .$$

Derive the additivity relation for the magnetic moments:

$$g = \frac{1}{2}(g_A + g_B) + \frac{1}{2}(g_A - g_B)\frac{J_A(J_A + 1) - J_B(J_B + 1)}{J(J + 1)} .$$

- 5. Calculate the quadrupole moment of the first 2^+ excited state in ²¹⁰Po, assuming that the valence protons occupy a single *j*-shell.
- 6. Calculate the magnetic moment of ⁵¹V ground state $J^{\pi} = \frac{7}{2}^{-}$ for the valence particles being in $f_{7/2}$ orbital only.
- 7. Calculate the matrix element for the β -decay of a free neutron.