Solution to Problems

- 1. All positive real numbers form a group with respect to ordinary multiplication.
- 2. All complex numbers form a group with respect to ordinary addition.
- 3. Let a and b be two different group elements such that $a \cdot c = d$ and $b \cdot c = d$. Let us multiply these two equations by c^{-1} from the left: $a = d \cdot c^{-1}$ and $b = d \cdot c^{-1}$. Thus we have then the elements a = b and our initial suppose was incorrect. Therefore, in one line of the multiplication table there cannot be two equal group elements.
- 4. The symmetry groups of the molecules: $H_2O: C_{2v}$, $NH_3: C_{3v}$, $CH_4: T_d$, $UF_6: O_h$.
- 5. The multiplication table for the point symmetry group C_4 :

	E	C_4	C_2	C_{4}^{3}
E	E	C_4	C_2	C_{4}^{3}
C_4	C_4	C_2	C_{4}^{3}	E
C_2	C_2	C_{4}^{3}	E	C_4
C_{4}^{3}	C_{4}^{3}	E	C_4	C_2

6.

- 7. Hint: check the corresponding boxes of the multiplication table.
- 8. hint: check the corresponding boxes of the multiplication table.
- 9. Hint: from the equations (i) (10) and (ii) (14) get the corresponding relations between parameters.
- 10. Hint: check that the group postulates are satisfied.
- 11. Among the elements there is no identity element.
- 12. n(n-1)/2 parameters.
- 13. Hint: show that $x'^2 y'^2 = x^2 y^2$.