Application of Group Theory to Quantum Mechanics. Part I Solutions to Problems

- Show that if under transformation of the coordinates the wave functions transforms as (13), then the operators will transform as (14).
 See Ref. [4].
- 2. A system is invariant with respect to the group \mathbf{D}_4 and its eigenstates can be classified according to the irreducible representations of this group. What will be the degeneracy of the states?

 \mathbf{D}_4 has five irreducible representations: four 1-dimensional and one 2-dimensional, therefore, there will be non-degenerate and 2-fold degenerate levels in the system.

3. Consider a system having the symmetry **O**. Suppose a perturbation is applied which reduces the symmetry to \mathbf{D}_4 . How will the 2-fold and 3-fold degenerate levels will be splitted?

O has one 2-dimensional irreducible representation (\tilde{E}) and two 3-dimensional ones $(\tilde{F}_1 \text{ and } \tilde{F}_2)$. The can be decomposed into the irreducible representations of \mathbf{D}_4 in the following way (the representations of \mathbf{D}_4 are in the right-hand side of the equations):

$$\dot{E} = A_1 \oplus B_1
\tilde{F}_1 = A_2 \oplus E
\tilde{F}_2 = B_2 \oplus E$$

4. Consider an atom of ⁴He placed in a crystal of tetrahedral symmetry \mathbf{T}_d symmetry. Classify two-electron wave functions.

In a strong crystalline field, the levels will be both of pure symmetries A_1 , A_2 , E, F_1 , F_2 , and in addition some of them can be grouped into clusters:

$$e \times e : \quad A_1 \oplus A_2 \oplus E; \\ e \times f_1 : \quad F_1 \oplus F_2; \\ f_1 \times f_1 : \quad A_1 \oplus E \oplus F_1 \oplus F_2; \\ f_1 \times f_2 : \quad A_2 \oplus E \oplus F_1 \oplus F_2. \end{cases}$$